A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation.
نویسندگان
چکیده
We report a mechanistic study of the catalytic effect of Ni(OH)2 on hematite nanowires for photoelectrochemical water oxidation. Ni compounds have been shown to be good catalysts for electrochemical and photoelectrochemical water oxidation. While we also observed improved photocurrents for Ni-catalyst decorated hematite photoanodes, we found that the photocurrents decay rapidly, indicating the photocurrents were not stable. Importantly, we revealed that the enhanced photocurrent was due to water oxidation as well as the photo-induced charging effect. In addition to oxidizing water, the photoexcited holes generated in hematite efficiently oxidize Ni(2+) to Ni(3+) (0.35 V vs. Ag/AgCl). The instability of photocurrent was due to the depletion of Ni(2+). We proposed that the catalytic mechanism of the Ni(II) catalyst for water oxidation is a two-step process that involves the fast initial oxidation of Ni(2+) to Ni(3+), and followed by the slow oxidation of Ni(3+) to Ni(4+), which is believed to be the active catalytic species for water oxidation. The catalytic effect of the Ni(II) catalyst was limited by the slow formation of Ni(4+). Finally, we elucidated the real catalytic performance of Ni(OH)2 on hematite for photoelectrochemical water oxidation by suppressing the photo-induced charging effect. This work could provide important insights for future studies on Ni based catalyst modified photoelectrodes for water oxidation.
منابع مشابه
The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping.
Photoelectrochemical water oxidation on hematite has been extensively studied, yet the relationship between the various facets exposed, heteroatom doping, and associated electrocatalytic activity has not been adequately explored. Here, hematite nanocrystals were synthesized with continuous tuning of the aspect-ratio and fine control of the surface area ratio of the (0001) facet with respect to ...
متن کاملWater oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.
In photoelectrochemical cells, sunlight may be converted into chemical energy by splitting water into hydrogen and oxygen molecules. Hematite (α-Fe(2)O(3)) is a promising photoanode material for the water oxidation component of this process. Numerous research groups have attempted to improve hematite's photocatalytic efficiency despite a lack of foundational knowledge regarding its surface reac...
متن کاملElectro-Catalytic Oxidation of Methanol at Ni(OH)2 Nanoparticles-Poly (o-Anisidine)/Triton X-100 Film onto Phosphotungstic Acid-Modified Carbon Paste Electrode
In this work, Phosphotungstic Acid modified Carbon Paste Electrode (PWA-CPE) is used as a substrate for electro-polymerization of o-Anisidine (OA). Also, Triton X-100 (TX-100) surfactant is used as an additive for electrochemical polymerization of OA onto the PWA-CPE, which is investigated as a novel matrix for dispersion of nickel species. The prepared electrodes are characterized by...
متن کاملEffect of MgAl2O4 catalyst support synthesis method on the catalytic activity of nickel Nano catalyst in reverse water gas shift reaction
In this research effect of synthesis method of magnesium aluminate as support of Ni catalysts at the reverse water gas shift (RWGS) reaction was evaluated. The RWGS reaction is applied in Carbon Dioxide Hydrogenation to Form Methanol via a Reverse Water-Gas Shift Reaction (CAMERE) process for the transformation of CO2 into methanol. The MgAl2O4 supports were prepared by sol-gel (M1), surfactant...
متن کاملRate Law Analysis of Water Oxidation on a Hematite Surface
Water oxidation is a key chemical reaction, central to both biological photosynthesis and artificial solar fuel synthesis strategies. Despite recent progress on the structure of the natural catalytic site, and on inorganic catalyst function, determining the mechanistic details of this multiredox reaction remains a significant challenge. We report herein a rate law analysis of the order of water...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2013